Boosting Based Multiple Kernel Learning and Transfer Regression for Electricity Load Forecasting

نویسندگان

  • Di Wu
  • Boyu Wang
  • Doina Precup
  • Benoit Boulet
چکیده

Accurate electricity load forecasting is of crucial importance for power system operation and smart grid energy management. Different factors, such as weather conditions, lagged values, and day types may affect electricity load consumption. We propose to use multiple kernel learning (MKL) for electricity load forecasting, as it provides more flexibilities than traditional kernel methods. Computation time is an important issue for short-term load forecasting, especially for energy scheduling demand. However, conventional MKL methods usually lead to complicated optimization problems. Another practical aspect of this application is that there may be very few data available to train a reliable forecasting model for a new building, while at the same time we may have prior knowledge learned from other buildings. In this paper, we propose a boosting based framework for MKL regression to deal with the aforementioned issues for short-term load forecasting. In particular, we first adopt boosting to learn an ensemble of multiple kernel regressors, and then extend this framework to the context of transfer learning. Experimental results on residential data sets show the effectiveness of the proposed algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Model Forecasting of Australian Regional Wholesale Electricity Prices

The expertise of electricity load forecasting has developed over decades. Some of the best load forecasting models use this expertise to improve the load forecasting accuracy by splitting the forecasting problem into sub-problems such as for weekend/weekday and peak/off peak. This research is designed to evaluate a method based on boosting algorithms to split the data into sub-problems for pric...

متن کامل

Towards smart energy systems: application of kernel machine regression for medium term electricity load forecasting

Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing syste...

متن کامل

Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission

The power industry is the main battlefield of CO2 emission reduction, which plays an important role in the implementation and development of the low carbon economy. The forecasting of electricity demand can provide a scientific basis for the country to formulate a power industry development strategy and further promote the sustained, healthy and rapid development of the national economy. Under ...

متن کامل

Electricity price forecasting using Wavelet domain and Time domain features in a Regression based technique

A combined wavelet transform (WT) and multiple linear regression (MLR) based technique to forecast price profile in a single settlement real time electricity market has been presented. The historical price and load data has been decomposed into better-behaved wavelet domain constitutive subseries using WT and then combined with other time domain variables to form the set of input variables for ...

متن کامل

GEFCom2012 Hierarchical load forecasting: Gradient boosting machines and Gaussian processes

This report discusses methods for forecasting hourly loads of a US utility as part of the load forecasting track of the Global Energy Forecasting Competition 2012 hosted on Kaggle. The methods described (gradient boosting machines and Gaussian processes) are generic machine learning / regression algorithms and few domain specific adjustments were made. Despite this, the algorithms were able to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017